Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Climate Dynamics, 3-4(46), p. 1241-1256

DOI: 10.1007/s00382-015-2642-x

Links

Tools

Export citation

Search in Google Scholar

How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere?

Journal article published in 2015 by Christian Seiler ORCID, Fw W. Zwiers
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Extratropical explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and heavy precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. This study evaluates how well the most recent generation of climate models reproduces extratropical explosive cyclones in the Northern Hemisphere for the period 1980–2005. An objective-feature tracking algorithm is used to identify and track cyclones from 25 climate models and three reanalysis products. Model biases are compared to biases in the sea surface temperature (SST) gradient, the polar jet stream, the Eady growth rate, and model resolution. Most models accurately reproduce the spatial distribution of explosive cyclones when compared to reanalysis data (R = 0.94), with high frequencies along the Kuroshio Current and the Gulf Stream. Three quarters of the models however significantly underpredict explosive cyclone frequencies, by a third on average and by two thirds in the worst case. This frequency bias is significantly correlated with jet stream speed in the inter-model spread (R ≥ 0.51), which in the Atlantic is correlated with a negative meridional SST gradient (R = −0.56). The importance of the jet stream versus other variables considered in this study also applies to the interannual variability of explosive cyclone frequency. Furthermore, models with fewer explosive cyclones tend to underpredict the corresponding deepening rates (R ≥ 0.88). A follow-up study will assess the impacts of climate change on explosive cyclones, and evaluate how model biases presented in this study affect the projections.