Springer (part of Springer Nature), Climate Dynamics, 3-4(46), p. 1241-1256
DOI: 10.1007/s00382-015-2642-x
Full text: Unavailable
Extratropical explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and heavy precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. This study evaluates how well the most recent generation of climate models reproduces extratropical explosive cyclones in the Northern Hemisphere for the period 1980–2005. An objective-feature tracking algorithm is used to identify and track cyclones from 25 climate models and three reanalysis products. Model biases are compared to biases in the sea surface temperature (SST) gradient, the polar jet stream, the Eady growth rate, and model resolution. Most models accurately reproduce the spatial distribution of explosive cyclones when compared to reanalysis data (R = 0.94), with high frequencies along the Kuroshio Current and the Gulf Stream. Three quarters of the models however significantly underpredict explosive cyclone frequencies, by a third on average and by two thirds in the worst case. This frequency bias is significantly correlated with jet stream speed in the inter-model spread (R ≥ 0.51), which in the Atlantic is correlated with a negative meridional SST gradient (R = −0.56). The importance of the jet stream versus other variables considered in this study also applies to the interannual variability of explosive cyclone frequency. Furthermore, models with fewer explosive cyclones tend to underpredict the corresponding deepening rates (R ≥ 0.88). A follow-up study will assess the impacts of climate change on explosive cyclones, and evaluate how model biases presented in this study affect the projections.