Published in

American Chemical Society, Journal of Physical Chemistry C, 21(119), p. 11370-11381, 2015

DOI: 10.1021/acs.jpcc.5b01166

Links

Tools

Export citation

Search in Google Scholar

Lithium Diffusion-Pathways in 3R-LixTiS2: A Combined Neutron Diffraction and Computational Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Layered lithium transition-metal sulfides have long been discussed as early electrode materials for lithium-ion batteries. However, fundamental knowledge of lithium-ion migration in these solids is still lacking. In this study, we report on the diffusion dynamics in lithium-deficient high-temperature polymorphs of lithium titanium sulfides (3R-LixTiS2; x = 0.7, 0.9) as analyzed using powder neutron diffractometry and density functional theory (DFT) climbing-image nudged-elastic-band (cNEB) calculations. Two classes of probable migration pathways have been identified from the scattering-length density distributions (filtered using the maximum-entropy method [MEM]) and the probability density functions (PDFs, modeled from anharmonic Debye-Waller factors): direct diffusion in the (001) plane as the major mechanism and indirect diffusion through adjacent tetrahedral voids as a minor mechanism. Calculated activation barriers agree well with one-particle potentials (OPPs) derived from measurements for Li0.7TiS2 (0.484[14] and 0.88[4] eV) but deviate for Li0.9TiS2. The discrepancy at low defect concentration is attributed to the failure of the OPP derivation and the different nature of the methods (space-time averaged vs individual-ion perspective). This work elucidates the pathways of lithium-ion diffusion in 3R-LixTiS2 and points out pitfalls in established experimental/computational methods. ; DFG, FOR 1277, Mobilität von Lithiumionen in Festkörpern (molife)