Published in

American Physiological Society, American Journal of Physiology - Gastrointestinal and Liver Physiology, 6(310), p. G337-G346, 2016

DOI: 10.1152/ajpgi.00191.2015

Links

Tools

Export citation

Search in Google Scholar

Fluorescence-Based Gene Reporter plasmid to track canonical Wnt signalling in ENS inflammation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.