Published in

Elsevier, Journal of Controlled Release, 1-2(111), p. 153-164

DOI: 10.1016/j.jconrel.2005.11.017

Links

Tools

Export citation

Search in Google Scholar

A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Destruction of the neovasculature is essential for efficient tumor eradication by photodynamic therapy (PDT). Since the over-expression of receptors for vascular endothelial growth factor (VEGF) is correlated with tumor angiogenesis and subsequent growth, we conjugated a photosensitizer (5-(4-carboxyphenyl)-10,15,20-triphenyl-chlorin, TPC), via a spacer (6-aminohexanoic acid, Ahx), to a VEGF receptor-specific heptapeptide (ATWLPPR). ATWLPPR and TPC-Ahx-ATWLPPR bound exclusively to neuropilin-1 (NRP-1) recombinant chimeric protein (IC50=19 and 171 microM, respectively) but were devoid of affinity for VEGF receptor type 2 (VEGFR-2, KDR), to which ATWLPPR was initially thought to bind. TPC-Ahx-ATWLPPR was incorporated up to 25-fold more in human umbilical vein endothelial cells (HUVEC) than TPC over a 24-h period, and the addition of 8 mM ATWLPPR induced a significant decrease of this uptake (P<0.05), corroborating a receptor-mediated incorporation. Slightly less cytotoxic in the dark, TPC-Ahx-ATWLPPR exhibited enhanced in vitro photodynamic activity (10.4-fold), compared to TPC. Pharmacokinetic analysis in nude mice xenografted with U87 human malignant glioma cells revealed relevant tumor levels as soon as 1 h after intravenous injection of TPC-Ahx-ATWLPPR, and a rapid elimination from the blood compartment. Moreover, TPC-Ahx-ATWLPPR was not degraded in vivo up to 2 h after intravenous injection. Taken together, our results demonstrate that TPC-Ahx-ATWLPPR is a much more potent photosensitizer in vitro than TPC, in NRP-1-expressing cells. Thus, it may efficiently potentiate the vascular effect of PDT in vivo.