Published in

Wiley, Applied Organometallic Chemistry, 1(16), p. 34-43, 2001

DOI: 10.1002/aoc.249

Links

Tools

Export citation

Search in Google Scholar

Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters

Journal article published in 2001 by Claudia Foti, Antonio Gianguzza, Demetrio Milea ORCID, Silvio Sammartano
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hydrolysis of (C2H5)2Sn2+, (C2H5)3Sn+ and (n-C3H7)3Sn+ has been studied, by potentiometric measurements ([H+]-glass electrode), in NaNO3, NaCl, NaCl/Na2SO4 mixtures and in a synthetic seawater (SSWE), as an ionic medium simulating the major composition of natural seawater, at different ionic strengths (0 ≤ I ≤ 5 mol dm−3) and salinities (15 ≤ S ≤ 45), and at t = 25 °C. Five hydrolytic species for (C2H5)2Sn2+, three for (C2H5)3Sn+ and two for (C3H7)3Sn+ are found. Interactions with the anion components of SSWE, considered as single-salt seawater, are determined by means of a complex formation model. A predictive equation for the calculation of unknown hydrolysis constants of trialkyltin(IV) cations, such as tributyltin(IV), in NaNO3, NaCl, and SSWE media at different ionic strengths is proposed. Equilibrium constants obtained are also used to determine the interaction parameters of Pitzer equations. Copyright © 2001 John Wiley & Sons, Ltd.