Published in

Proceedings Visualization, 2001. VIS '01.

DOI: 10.1109/visual.2001.964517

Links

Tools

Export citation

Search in Google Scholar

Distance-field based skeletons for virtual navigation

Proceedings article published in 1 by Ming Wan, F. Dachille, A. Kaufman
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a generic method for rapid flight planning, virtual navigation and effective camera control in a volumetric environment. Directly derived from an accurate distance from boundary (DFB) field, our automatic path planning algorithm rapidly generates centered flight paths, a skeleton, in the navigable region of the virtual environment. Based on precomputed flight paths and the DFB field, our dual-mode physically based camera control model supports a smooth, safe, and sticking-free virtual navigation with six degrees of freedom. By using these techniques, combined with accelerated volume rendering, we have successfully developed a real-time virtual colonoscopy system on low-cost PCs and confirmed the high speed, high accuracy and robustness of our techniques on more than 40 patient datasets.