Published in

Elsevier, Science of the Total Environment, 8(409), p. 1466-1475

DOI: 10.1016/j.scitotenv.2010.12.025

Links

Tools

Export citation

Search in Google Scholar

Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

On May 2009, both the gas and particulate fractions of smoke from a wildfire in Sever do Vouga, central Portugal, were sampled. Total hydrocarbons and carbon oxides (CO(2) and CO) were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Fine (PM(2.5)) and coarse (PM(2.5-10)) particles from the smoke plume were analysed by a thermal-optical transmission technique to determine the elemental and organic carbon (EC and OC) content. Subsequently, the particle samples were solvent extracted and fractionated by vacuum flash chromatography into different classes of organic compounds. The detailed organic speciation was performed by gas chromatography-mass spectrometry. The CO, CO(2) and total hydrocarbon emission factors (g kg(-1) dry fuel) were 170 ± 83, 1485 ± 147, and 9.8 ± 0.90, respectively. It was observed that the particulate matter and OC emissions are significantly enhanced under smouldering fire conditions. The aerosol emissions were dominated by fine particles whose mass was mainly composed of organic constituents, such as degradation products from biopolymers (e.g. levoglucosan from cellulose, methoxyphenols from lignin). The compound classes also included homologous series (n-alkanes, n-alkenes, n-alkanoic acids and n-alkanols), monosaccharide derivatives from cellulose, steroid and terpenoid biomarkers, and polycyclic aromatic hydrocarbons (PAHs). The most abundant PAH was retene. Even carbon number homologs of monoglycerides were identified for the first time as biomarkers in biomass burning aerosols.