Dissemin is shutting down on January 1st, 2025

Published in

Springer, Lecture Notes in Computer Science, p. 69-82, 2006

DOI: 10.1007/11732990_6

Mary Ann Liebert, Journal of Computational Biology, 3(14), p. 324-338, 2007

DOI: 10.1089/cmb.2007.0001

Links

Tools

Export citation

Search in Google Scholar

A Patient-Gene Model for Temporal Expression Profiles in Clinical Studies

Journal article published in 2006 by Naftali Kaminski ORCID, Ziv Bar-Joseph
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pharmacogenomics and clinical studies that measure the temporal expression levels of patients can identify important pathways and biomarkers that are activated during disease progression or in response to treatment. However, researchers face a number of challenges when trying to combine expression profiles from these patients. Unlike studies that rely on lab animals or cell lines, individuals vary in their baseline expression and in their response rate. In this paper we present a generative model for such data. Our model represents patient expression data using two levels, a gene level, which corresponds to a common response pattern, and a patient level, which accounts for the patient specific expression patterns and response rate. Using an EM algorithm, we infer the parameters of the model. We used our algorithm to analyze multiple sclerosis patient response to interferon-beta. As we show, our algorithm was able to improve upon prior methods for combining patients data. In addition, our algorithm was able to correctly identify patient specific response patterns.