Published in

Trans Tech Publications, Advanced Engineering Forum, (2-3), p. 140-143, 2011

DOI: 10.4028/www.scientific.net/aef.2-3.140

Links

Tools

Export citation

Search in Google Scholar

Simulation Analysis on Cymbal Transducer

Journal article published in 2011 by Qing Feng Yang, Peng Wang, Yu Hong Wang, Kai Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The resonance frequency of the cymbal transducer ranges from 2kHz to 40kHz and its effective electromechanical coupling factor is around 20%. Finite element analysis has been performed to ascertain how the transducer’s makeup affect the transducer’s performance parameters. Two-dimensional axisymmetric model of the cymbal transducer was founded by finite element software-ANSYS, the application of the element type was discussed and the FEM models were built up under the far field condition. Eight groups of cymbal transducers of resonance frequency around 3kHz with different structural dimensions were designed. It was better for choosing the cymbal transducer of the 8mm cavity coping diameter, 20.8mm cavity bottom diameter and 26.8mm piezoelectric ceramic wafer diameter than others for reducing distortion degree of the signal and improving communication turnover in the researched cymbal transducers. It was appropriate for choosing the cymbal transducer of the 8mm cavity coping diameter, 22.4mm cavity bottom diameter and 26.4mm piezoelectric ceramic wafer diameter in order to improve the free-field voltage sensitivity and transmission efficient.