Published in

Royal Society of Chemistry, Nanoscale, 2(8), p. 1123-1132, 2016

DOI: 10.1039/c5nr03134f

Links

Tools

Export citation

Search in Google Scholar

Metalation of tetraphenylporphyrin with nickel on a TiO2(110)-1 × 2 surface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The in-situ metalation of tetraphenylporphyrin (2HTPP) with Ni on the reconstructed TiO2(110)-1×2 surface, resulting in the formation of adsorbed nickel(II)-tetraphenylporphyrin (NiTPP), has been investigated by synchrotron radiation photoemission spectroscopy (SRPES), scanning tunnelling microscopy (STM) and ab initio Density Functional Theory (DFT) calculations. The metalation can be realized at room temperature irrespective of the deposition order of Ni and 2HTPP, which however leads to different metalation degrees. Increasing the substrate temperature or Ni:2HTPP ratio results in higher metalation degree, which ultimately reaches its limit at 􄍐85% (Ni:2HTPP = 3:1) and 􄍐49% (Ni:2HTPP = 1:1) for the cases of post- and pre-deposition of Ni, respectively. The reaction from 2HTPP to NiTPP is accompanied by changes of the molecular adsorption conformation and the adsorption sites from tilted two-lobed on added Ti2O3 rows to a four-lobed feature on top of troughs or cross-links of the TiO2(110)-1×2 surface. This interpretation of the STM data is supported by DFT-based STM simulations.