Published in

Cambridge University Press, Journal of Glaciology, 225(61), p. 29-41, 2015

DOI: 10.3189/2015jog14j159

Links

Tools

Export citation

Search in Google Scholar

Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.