American Chemical Society, Chemistry of Materials, 10(19), p. 2603-2609, 2007
DOI: 10.1021/cm062962w
Full text: Download
A novel sol-gel route was developed to prepare monolithic hybrid silica/polymer aerogels, stable under atmospheric conditions and suitable for machining. The synthesis of the hybrid wet gels followed a two-step hydrolysis/polycondensation of tetraethoxysilane with excess water, in 2-propanol. Cohydrolysis with trimethoxysilyl-modified poly(butyl metacrylate-co-butyl acrylate) cross-linked nanoparticles (average diameter of 94 nm) was carried out. Different alcogels were prepared varying the hydrolysis and condensation catalysis conditions and the polymer content (0-50% in weight). The aged alcogels were subcritically dried in a quasi-saturated solvent atmosphere. The resulting xerogels were characterized by dry-flow pycnometry, nitrogen adsorption-desorption, scanning electron microscopy (SEM), and diffuse reflectance infrared spectroscopy (DRIFT), and their mechanical properties were evaluated by unidirectional compression tests. The hybrid aerogels show improved mechanical properties with respect to