Published in

American Society of Mechanical Engineers, Journal of Energy Resources Technology, 1(121), p. 9

DOI: 10.1115/1.2795063

Links

Tools

Export citation

Search in Google Scholar

Flow Field Prediction and Bubble Trajectory Model in Gas-Liquid Cylindrical Cyclone (GLCC) Separators

Journal article published in 2 by Ivan Mantilla, Siamack A. Shirazi, Ovadia Shoham
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Several mechanistic models have been already developed for predicting the onset of liquid carryover in gas-liquid cylindrical cyclone (GLCC) separators. However, currently no model is available to predict gas carryunder. A bubble trajectory model has been developed that can be used to determine the initiation of gas carryunder in the GLCC and to design GLCC for field applications. The bubble trajectory model uses a predicted flow field in GLCC that is based on swirl intensity. This paper describes the development of a general correlation to predict the decay of the swirl intensity. The correlation accounts for the effects of fluid properties (Reynolds number) as well as inlet geometry. Available experimental data as well as computational fluid dynamics (CFD) simulations were used to validate the correlation. The swirl intensity is used to calculate the local axial and tangential velocities. The flow model and improved bubble trajectory results agree with experimental observation and CFD results. Examples are provided to show how the bubble trajectory model can be used to design GLCC.