Published in

Elsevier, Electrochimica Acta, (174), p. 735-744

DOI: 10.1016/j.electacta.2015.06.037

Links

Tools

Export citation

Search in Google Scholar

The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dimensionally Stable Anodes (DSA) of Sb2O5-doped Ti/RuO2-ZrO2 are prepared by the Pechini method to perform the degradation of indigo carmine (IC) under conditions similar to textile wastewater effluents. XRD results along with Rietveld refinement reveal that the co-deposited phases on the DSA exhibit a tetragonal crystal structure (P4/mmm) for RuO2 and monoclinic structure (P2/m) for ZrO2. Degradation tests conducted in solutions containing 0.64 mM IC and 0.05 M NaCl using a filter-press reactor (FM01-LC) show that the degradation rate is faster and more efficient at 200 A m−2 with a flow rate of 5 L min−1, although the energy consumption is moderately higher. Under this condition, the pollutant is efficiently removed, and converted to aliphatic acid compounds of low molecular weight, as indicated by 90 % Chemical Oxygen Demand (COD), 22 % Total Organic Carbon (TOC) elimination, along with an Average Oxidation State (AOS) value equal to 3.0. The energy consumptions revealed that it is feasible to carry out the IC degradation under reasonable operating costs. Topological and Natural Bond Orbital (NBO) analyses are computed using density functional theory (DFT), and combined with experimental results to propose a reaction pathway for IC abatement.