Dissemin is shutting down on January 1st, 2025

Published in

BioScientifica, Journal of Endocrinology, 3(193), p. 349-357, 2007

DOI: 10.1677/joe-07-0070

Links

Tools

Export citation

Search in Google Scholar

Corticotropin-releasing factor (CRF) and CRF-binding protein expression in and release from the head kidney of common carp: Evolutionary conservation of the adrenal CRF system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Corticotropin-releasing factor (CRF) plays a central role in the regulation of the stress axis. In mammals, CRF as well as its receptors and its CRF-binding protein (CRF-BP) are expressed in a variety of organs and tissues outside the central nervous system. One of these extrahypothalamic sites is the adrenal gland, where the paracrine actions of adrenal CRF influence cortical steroidogenesis and adrenal blood flow. Although the central role of CRF signaling in the initiation and regulation of the stress response has now been established throughout vertebrates, information about the possible peripheral presence of CRF in earlier vertebrate lineages is scant. We established the expression of CRF, CRF-BP, and the CRF receptor 1 in a panel of peripheral organs of common carp (Cyprinus carpio). Out of all the peripheral organs tested, CRF and CRF-BP are most abundantly expressed in the carp head kidney, the fish equivalent of the mammalian adrenal gland. This expression localizes to chromaffin cells. Furthermore, detectable quantities of CRF are released from the intact head kidney following in vitro stimulation with 8-bromo-cAMP in a superfusion setup. The presence of CRF and CRF-BP within the chromaffin compartment of the head kidney suggests that a pathway homologous to the mammalian intra-adrenal CRF system is present in the head kidney of fish. It follows that such a system to locally fine-tune the outcome of the centrally initiated stress response has been an integral part of the vertebrate endocrine system since the common ancestor of teleostean fishes and mammals.