Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 27(3), p. 14096-14100
DOI: 10.1039/c5ta01855b
Full text: Download
MXenes, a novel family of two-dimensional metal carbides, are receiving intense interest in lithium-ion batteries (LIBs) and supercapacitors because they have high volumetric capacitance exceeding all carbon materials. However, serious interlayer stack exists in MXene particles, which greatly decreases the electrical conductivity in the bulk and hinders the accessibility of interlayer to electrolyte ions. Thus, multi-stacked MXene particles exhibit low capacitance and poor rate capability. Herein, we report an effective strategy to directly improve the electrochemical performance of multi-stacked MXene (Ti3C2Tx) particles as LIB anode material. It was successfully realized by growing conductive “carbon nanofibers (CNFs) bridges” within the gaps of each Ti3C2Tx particle as well as the outsides. With the help of these CNFs, as-prepared Ti3C2/CNF particles exhibited significantly improved reversible capacity compared with pure Ti3C2Tx particles. More remarkably, even at an ultrahigh rate of 100 C, the capacity of Ti3C2/CNF hybrid particles was just slight lower than that of pure Ti3C2Tx particles at 1 C, and there was no capacity decay after 2900 cycles at 100 C, demonstrating excellent rate capability and superior long-term stability at the ultrahigh rate.