Published in

Royal Society of Chemistry, MedChemComm, 11(5), p. 1651-1657

DOI: 10.1039/c4md00177j

Links

Tools

Export citation

Search in Google Scholar

Modeling, synthesis and NMR characterization of novel chimera compounds targeting STAT3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Signal Transducer and Activator of Transcription 3 (STAT3) is a cytoplasmic factor that mediates intracellular signaling commonly generated at cell surface receptors and transmits it to the nucleus. In previous research studies we synthesized several molecules inhibiting STAT3 and among them oxadiazole MD77 and pyridazinone I showed an interesting activity. For the first one, a direct inhibition mechanism was determined, while I interfered within the STAT3 pathway at a different level. In order to discover novel compounds possibly endowed with an improved activity, we decided to merge their scaffolds on the basis of their calculated conformational properties. Therefore we designed and synthesized the chimera diastereomers 3-oxo-N-(4-(trifluoromethyl)phenyl)-2,3,4,4a,5,6-hexahydrobenzo[h]cinnoline-6-carboxamide (1, 2) and 3-oxo-N-(4-(trifluoromethyl)phenyl)-2,3,5,6-tetrahydrobenzo[h]cinnoline-6-carboxamide (3) as racemate and their enantiomeric separation was performed. Modeling studies and theoretical prediction of [α]D values were carried out beside NMR studies which allowed us to assign 1 and 2 relative configurations.