Published in

American Physical Society, Physical Review Applied, 6(3)

DOI: 10.1103/physrevapplied.3.064014

Links

Tools

Export citation

Search in Google Scholar

Frequency-Preserved Acoustic Diode Model with High Forward-Power-Transmission Rate

Journal article published in 2015 by Chang Liu, Zongliang Du, Zhi Sun, Huajian Gao ORCID, Xu Guo
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves traveling in two directions at the same time and interfering with each other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only partially fill this role by converting sound to a new frequency and blocking any backward flow of the original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes. The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional example. Possible schemes for experimental realization of this model as well as more complex and efficient AD designs are also discussed.