Published in

Springer, MRS Bulletin, 8(40), p. 654-659, 2015

DOI: 10.1557/mrs.2015.166

Links

Tools

Export citation

Search in Google Scholar

Two-step deposition method for high-efficiency perovskite solar cells

Journal article published in 2015 by Jin-Wook Lee, Nam-Gyu Park
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Perovskite solar cells based on organolead halide perovskite light absorbers have been considered a promising photovoltaic technology due to their superb power-conversion efficiency along with cheap material cost. Since the first work on long-term durable solid-state perovskite solar cells, a tremendous volume of research on perovskite solar cells has been carried out. A high photovoltaic performance is mainly attributed to the high-quality CH3NH3PbI3 (MAPbI3) material that is strongly dependent on the fabrication method used. MAPbI3 can be prepared by either a single-step procedure or a sequential two-step deposition technique. The two-step method was found, in general, to show better coverage, morphology, and infiltration into a mesoporous oxide layer, which led to high-quality perovskites with desirable optoelectronic properties and thereby high-efficiency perovskite solar cells.