Published in

American Chemical Society, Journal of Physical Chemistry C, 37(119), p. 21395-21403, 2015

DOI: 10.1021/acs.jpcc.5b04042

Links

Tools

Export citation

Search in Google Scholar

Detection of Phase Transition in Photosensitive Liposomes by Advanced QCM

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work an impedance-based quartz crystal microbalance (QCM) is used to detect heat induced changes in the viscoelastic properties in the films of adsorbed liposomes. Liposomes are bound to a polymer-modified QCM surface, and heat is induced in the bilayer via light absorption into gold nanoparticles (GNPs) embedded in the liposomes. Due to very rapid heat transfer at the nanoscale, nanoparticles can reside either in the liposome cavity or within the bilayer to cause changes in the lipid viscoelasticity. The changes are observed as changes in the film relaxation time as well as by mapping the measured resonance frequency vs. resistance. The QCM results indicate that viscoelastic changes occur throughout the vesicle layer, possibly causing fusion between the liposomes. The ultimate goal of the work is to develop a smart drug delivery system for the eye, whereby a drug loaded in the liposome can be released in a controlled manner by light triggering.