Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, FEMS Microbiology Ecology, 2(76), p. 256-267, 2011

DOI: 10.1111/j.1574-6941.2011.01049.x

Links

Tools

Export citation

Search in Google Scholar

High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The diversity of the putative polyphosphate-accumulating genus Tetrasphaera in wastewater treatment systems with enhanced biological phosphorus removal (EBPR) was investigated using the full-cycle rRNA approach combined with microautoradiography and histochemical staining. 16S rRNA actinobacterial gene sequences were retrieved from different full-scale EBPR plants, and the sequences belonging to the genus Tetrasphaera (family Intrasporangiaceae) were found to form three clades. Quantitative FISH analyses of the communities in five full-scale EBPR plants using 10 new oligonucleotide probes were carried out. The results showed that the probe-defined Tetrasphaera displayed different morphologies and constituted up to 30% of the total biomass. It was shown that active uptake of orthophosphate and formation of polyphosphate took place in most of the probe-defined Tetrasphaera populations. However, aerobic uptake of orthophosphate only took place after uptake of certain carbon sources under anaerobic conditions and these were more diverse than hitherto assumed: amino acids, glucose, and for some also acetate. Tetrasphaera seemed to occupy a slightly different ecological niche compared with 'Candidatus Accumulibacter' contributing to a functional redundancy and stability of the EBPR process.