Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Dalton Transactions, 46(41), p. 14170

DOI: 10.1039/c2dt31531a

Links

Tools

Export citation

Search in Google Scholar

Synthesis and comparative study of Co(pym)(VO3)2 and [Co(H2O)2(VO3)2]·2H2O

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The three-dimensional Co(pym)(VO(3))(2), , hybrid compound, where pym is pyrimidine, has been synthesized under mild hydrothermal conditions at 120 °C. The compound has been characterized by FT-IR spectroscopy, elemental analysis, thermogravimetric measurements, thermodiffractometry, UV-Vis spectroscopy, temperature-dependent magnetic susceptibility and magnetization, and finally a study of specific heat has been performed. The crystal structure of was solved using single-crystal X-ray diffraction data, taking into account that the crystals of this compound are twins of two components. It crystallizes in the monoclinic system, space group C2/c, a = 12.899(5) Å, b = 9.859(2) Å, c = 7.051(1) Å, β = 111.41(3)°, Z = 4. The crystal structure is built up from edge sharing VO(5) trigonal bipyramid double chains and [CoO(4)pym](n) chains. This resembles the structure of the [Co(H(2)O)(2)(VO(3))(2)]·2H(2)O compound, . For this reason a comparative study of their properties was carried out. Magnetic measurements of , performed in the 2.0 to 300 K range, reveal the existence of a weak ferromagnetic order near 3 K. This fact was confirmed with magnetization measurements, which show irreversibility characteristic of soft ferromagnets. Magnetic measurements of show a 3D antiferromagnetic ordering at 2.5 K. The magnetization shows a small change of curvature indicating the occurrence of a metamagnetic transition. Specific heat measurements of both compounds confirm the 3D nature of the magnetic order. The comparative study of the magneto-structural correlations reveals that the pyrimidine molecules are responsible for the different magnetic behaviour between and .