Full text: Download
To survive in a mechanically active environment, cells must adapt to variations of applied membrane tension. A collagen-coated magnetic bead model was used to apply forces directly to the actin cytoskeleton through integrin receptors. We demonstrate here that by a calcium-dependent mechanism, human fibroblasts reinforce locally their connection with extracellular adhesion sites by inducing actin assembly and by recruiting actin-binding protein 280 (ABP-280) into cortical adhesion complexes. ABP-280 was phosphorylated on serine residues as a result of force application. This phosphorylation and the force-induced actin reorganization were largely abrogated by inhibitors of protein kinase C. In a human melanoma cell line that does not express ABP-280, actin accumulation could not be induced by force, whereas in stable transfectants expressing ABP-280, force-induced actin accumulation was similar to human fibroblasts. Cortical actin assembly played a role in regulating the activity of stretch-activated, calcium-permeable channels (SAC) since sustained force application desensitized SAC to subsequent force applications, and the decrease in stretch sensitivity was reversed after treatment with cytochalasin D. ABP-280-deficient cells showed a > 90% increase in cell death compared with ABP-280 +ve cells after force application. We conclude that ABP-280 plays an important role in mechanoprotection by reinforcing the membrane cortex and desensitizing SACs.