Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Computers, 10(63), p. 2626-2632, 2014

DOI: 10.1109/tc.2013.125

Links

Tools

Export citation

Search in Google Scholar

Improved Miller’s Algorithm for Computing Pairings on Edwards Curves

Journal article published in 2014 by Duc-Phong Le, Chik How Tan
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Since Edwards curves were introduced to elliptic curve cryptography by Bernstein and Lange in 2007, they have received a lot of attention due to their very fast group law operation. Pairing computation on such curves is slightly slower than on Weierstrass curves. However, in some pairing-based cryptosystems, they might require a number of scalar multiplications which is time-consuming operation and this can be advantageous to use Edwards in this scenario. In this paper, we present a variant of Miller’s algorithm for pairing computation on Edwards curves. Our approach is generic, it is able to compute both Weil and Tate pairings on pairing-friendly Edwards curves of any embedding degree. Our analysis shows that the new algorithm is faster than the previous algorithms for odd embedding degree and as fast as for even embedding degree. Hence, the new algorithm is suitable for computing optimal pairings and in situations where the denominators elimination technique is not possible.