Published in

American Meteorological Society, Journal of Climate, 19(15), p. 2821-2832, 2002

DOI: 10.1175/1520-0442(2002)015<2821:rgaefr>2.0.co;2

Links

Tools

Export citation

Search in Google Scholar

Recent Greenland Accumulation Estimated from Regional Climate Model Simulations and Ice Core Analysis*

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The accumulation defined as "precipitation minus evaporation" over Greenland has been simulated with the high-resolution limited-area regional climate model HIRHAM4 applied over an Arctic integration domain. This simulation is compared with a revised estimate of annual accumulation rate distribution over Greenland taking into account information from a new set of ice core analyses, based on surface sample collections from the North Greenland Traverse. The region with accumulation rates below 150 mm yr-1 in central-northwest Greenland is much larger than previously assumed and extends about 500 km farther to the south. It is demostrated that good agreement between modeled and observed regional precipitation and accumulation patterns exists, particularly concerning the location and the values of very low accumulation in the middle of Greenland. The accumulation rates in the northern part of Greenland are reduced in comparison to previous estimates. These minima are connected with a prevailing blocking high over the Greenland ice sheet and katabatic wind systems preventing humidity transports to central Greenland. The model reasonably represents the synoptic situations that lead to precipitation. Maxima of precipitation and accumulation occur at the southwestern and southeastern coasts of Greenland and are connected with cyclonic activity and the main storm tracks around Greenland. The central region of the Greenland ice sheet acts as a blocking barrier on moving weather systems and prohibits cyclones moving from west to east across this region and, thus prevents moisture transports.