Published in

Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1(1543), p. 174-188

DOI: 10.1016/s0167-4838(00)00174-6

Links

Tools

Export citation

Search in Google Scholar

Isolation and physico-chemical characterization of a cytochrome c from the methylotrophic yeast Hansenula polymorpha

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cytochrome c from the methylotrophic yeast Hansenula polymorpha was isolated and purified to homogeneity for the first time. The final yield of the highly purified protein from 1.4 kg (wet weight) cells was about 20 mg. The hemoprotein has an apparent molecular mass of 12 kDa and isoelectric point (pI) of 9.3. The purified protein was characterized by electronic, EPR and NMR spectroscopies. The redox potential of the cytochrome, E°, measured by cyclic voltammetry measurements at neutral pH, is 0.302 V. Both NMR spectroscopy and electrochemical measurements confirm the presence in the solution of several acid–base equilibria, the most pronounced being characterized by a pKa of 8.3. The latter pKa was attributed to the detachment of the iron(III) ion-coordinated methionine and its replacement by a lysine residue. The electrochemically derived thermodynamic parameters for neutral and alkaline protein species (ΔS°rc and ΔH°rc) were obtained from the temperature dependence of the redox potential.