Published in

Elsevier, Engineering Structures, 10(30), p. 2707-2715

DOI: 10.1016/j.engstruct.2008.03.005

Links

Tools

Export citation

Search in Google Scholar

Fatigue analysis of riveted railway bridge connections using the theory of critical distances

Journal article published in 2008 by Timothy D. Righiniotis, Boulent M. Imam, Marios K. Chryssanthopoulos
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies have found that stringer-to-cross-girder connections in riveted railway bridges are susceptible to fatigue cracking, caused by secondary, deformation induced effects. These effects are difficult to interpret in terms of a single applied stress descriptor, which is customarily used in an S–N assessment. In order to address this problem, the results of a global–local finite element analysis of a riveted railway bridge are used in this paper within the context of the theory of critical distances (TCD). Using the TCD in the way proposed by Taylor [Bellett D, Taylor D, Marco S, Mazzeo E, Guillois J, Pircher T. The fatigue behaviour of three-dimensional stress concentrations. Int J Fatigue 2005; 27(3) 207–21], fatigue damage (a) is shown to converge upon mesh refinement and (b) is found to be relatively sensitive to the selection of the characteristic dimension of the critical volume. Furthermore, comparisons of the TCD-based method with its more traditional, detail-specific S–N counterpart, reveal that the latter can underestimate fatigue damage, in some cases by a factor of 3.5.