Published in

Elsevier, Journal of Alloys and Compounds, (632), p. 585-590, 2015

DOI: 10.1016/j.jallcom.2014.12.215

Links

Tools

Export citation

Search in Google Scholar

The vibrational and configurational entropy of disordering in Cu3Au

Journal article published in 2015 by Artur Benisek, Edgar Dachs
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The thermodynamics of disordering in Cu3Au have been investigated by measuring the heat capacity of samples with different degrees of long- and short-range order between T = 5 and 720 K using relaxation and differential scanning calorimetry. The heat capacities of L12-ordered and fcc-disordered samples show similar behaviour at low temperatures (< 300 K). They deviate positively from the linear combination of the end-member heat capacities between ∼30 and 160 K. However, small differences between the two samples exist, as the disordered sample has a larger heat capacity producing a vibrational entropy of disordering of ∼0.05 R. At temperatures higher than 300 K, the heat capacity of the ordered sample shows a prominent lambda-type anomaly at 675 K due to the diffusive L12 – fcc phase transition. When starting these measurements with disordered samples, ordering effects are observed between 400 and 620 K, and the disordering reaction is observed at 660 K. Evaluation of the data gives an enthalpy and entropy of disordering at 683 K of 2.0 kJ mol-1 and 0.39 R, respectively. However, these values increase with increasing temperature, thereby reducing the short-range order. Because the vibrational and configurational disordering effects become active at different temperature regimes, i.e., the vibrational effects at low temperatures (T << 300 K) and the sum of both effects at higher temperatures (T > 300 K), they have been successfully separated.