Elsevier, Thin Solid Films, (536), p. 124-129
DOI: 10.1016/j.tsf.2013.03.092
Full text: Download
Acanthite (Ag2S) thin films were fabricated on fluorine doped tin oxide coated conducting glass substrates by aerosol assisted chemical vapor deposition (AACVD) using silver cluster [Ag4{S2CN(C2H5)2}3(C5H5N)2]n·nNO3·2nH2O (1) [where (S2CN(C2H5)2) = diethyldithiocarbamate, C5H5N = pyridine] as a single source precursor. Cluster (1) was synthesized by the reaction of sodium diethyldithiocarbamate with silver nitrate in a mixture of acetone and pyridine. (1) was analyzed by melting point, elemental analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, thermogravimetry and single crystal X-ray studies. Single crystal X-ray studies showed that (1) crystallizes in the triclinic crystal system with a = 11.4372(3), b = 11.6768(3), and c = 16.3672(4) Å and α = 105.817(3), β = 97.891(3), and γ = 93.274(3)° in the space group P-1. Thermogravimetric analysis revealed that (1) undergoes facile thermal decomposition at 400 °C to give a stable residual mass consistent with the formation of Ag2S. Thin films grown from a 0.02 M solution of (1) in pyridine at 350 and 400 °C using AACVD technique were characterized by powder X-ray diffraction, field emission scanning electron microscopy (FESEM), energy dispersive X-ray and ultraviolet-visible spectrophotometry. FESEM images of the films exhibited well-defined nanorods with length > 1000 nm and diameter 100–150 nm grown without any cracks, fractures or directional preference. A band gap of 1.05 eV was estimated by extrapolating the linear part of a Tauc plot recorded for the films. The photoelectrochemical (PEC) characteristics recorded under Air Mass 1.5 illumination indicated a photocurrent density of 220 μA cm− 2 at 0.0 V vs Ag/AgCl/3 M KCl. The optical and PEC characteristics of the deposited thin films proved their suitability for PEC applications.