Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 5(19), p. 1354-1360, 1999

DOI: 10.1161/01.atv.19.5.1354

Links

Tools

Export citation

Search in Google Scholar

Effects of native, triglyceride-enriched, and oxidatively modified LDL on plasminogen activator inhibitor-1 expression in human endothelial cells

Journal article published in 1999 by Beth A. Allison, Lennart Nilsson, Fredrik Karpe, Anders Hamsten, Per Eriksson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract —Whereas VLDL has consistently been shown to induce a concentration-dependent increase in the expression of plasminogen activator inhibitor-1 (PAI-1) in human umbilical vein endothelial cells (HUVECs) and liver cells, variable effects have been reported for native and oxidatively modified LDL. In the present study, activation of PAI-1 protein and mRNA expression by native LDL (nLDL), UV-oxidized LDL (uvLDL), and triglyceride (TG)-enriched LDL was studied in HUVECs by using different incubation times and a wide range of lipoprotein concentrations. No significant increase of PAI-1 protein expression was observed after 4 hours of incubation with nLDL or uvLDL. However, PAI-1 protein secretion from HUVECs was markedly enhanced after 18 hours of incubation with uvLDL (200% increase at 10 μg/mL). Stimulation of PAI-1 protein expression in HUVECs by nLDL was seen, however, after increasing the TG content of the LDL particle. LDL enriched in phospholipid had no effect on PAI-1 secretion. PAI-1 mRNA levels on northern blot increased in parallel with the activation of PAI-1 protein expression by native and modified forms of LDL. Low concentrations of TG-enriched LDL (10 μg/mL) and higher concentrations of nLDL and uvLDL (100 μg/mL) were found to increase the binding of a VLDL-inducible transcription factor to the PAI-1 promoter. These results indicate that the TG content of the LDL particle influences PAI-1 expression in endothelial cells. Low concentrations of uvLDL enhanced PAI-1 protein and mRNA expression in the HUVECs after an 18-hour incubation but did not influence the VLDL-inducible transcription factor. This suggests that low levels of oxidized LDL increase PAI-1 expression by a different mechanism than VLDL and TG-enriched LDL.