Published in

Cell Press, Trends in Biochemical Sciences, 10(33), p. 482-490

DOI: 10.1016/j.tibs.2008.07.004

Links

Tools

Export citation

Search in Google Scholar

Disparate proteins use similar architectures to damage membranes

Journal article published in 2008 by Gregor Anderluh ORCID, Jeremy H. Lakey ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Membrane disruption can efficiently alter cellular function; indeed, pore-forming toxins (PFTs) are well known as important bacterial virulence factors. However, recent data have revealed that structures similar to those found in PFTs are found in membrane active proteins across disparate phyla. Many similarities can be identified only at the 3D-structural level. Of note, domains found in membrane-attack complex proteins of complement and perforin (MACPF) resemble cholesterol-dependent cytolysins from Gram-positive bacteria, and the Bcl family of apoptosis regulators share similar architectures with Escherichia coli pore-forming colicins. These and other correlations provide considerable help in understanding the structural requirements for membrane binding and pore formation.