Published in

Wiley, Advanced Functional Materials, 13(22), p. 2783-2791, 2012

DOI: 10.1002/adfm.201102550

Links

Tools

Export citation

Search in Google Scholar

Universal Electron Injection Dynamics at Nanointerfaces in Dye-Sensitized Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Initial nanointerfacial electron transfer dynamics are studied in dye-sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot-sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal-free organic dye-sensitized photovoltaic devices by molecular engineering.