Published in

The Royal Society, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1883(366), p. 4273-4293, 2008

DOI: 10.1098/rsta.2008.0172

Links

Tools

Export citation

Search in Google Scholar

Some recent advances in understanding the mineralogy of Earth's deep mantle

Journal article published in 2008 by Thomas S. Duffy ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure–temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure–temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core–mantle boundary region. Theoretical studies of the behaviour of MgSiO3liquids under high pressure–temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).