Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature, 7172(450), p. 1058-1061, 2007

DOI: 10.1038/nature06430

Links

Tools

Export citation

Search in Google Scholar

A distinct bosonic mode in an electron-doped high-transition-temperature superconductor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite recent advances in understanding high-transition-temperature (high-T(c)) superconductors, there is no consensus on the origin of the superconducting 'glue': that is, the mediator that binds electrons into superconducting pairs. The main contenders are lattice vibrations (phonons) and spin-excitations, with the additional possibility of pairing without mediators. In conventional superconductors, phonon-mediated pairing was unequivocally established by data from tunnelling experiments. Proponents of phonons as the high-T(c) glue were therefore encouraged by the recent scanning tunnelling microscopy experiments on hole-doped Bi2Sr2CaCu2O8-delta (BSCCO) that reveal an oxygen lattice vibrational mode whose energy is anticorrelated with the superconducting gap energy scale. Here we report high-resolution scanning tunnelling microscopy measurements of the electron-doped high-T(c) superconductor Pr0.88LaCe0.12CuO4 (PLCCO) (T(c) = 24 K) that reveal a bosonic excitation (mode) at energies of 10.5 +/- 2.5 meV. This energy is consistent with both spin-excitations in PLCCO measured by inelastic neutron scattering (resonance mode) and a low-energy acoustic phonon mode, but differs substantially from the oxygen vibrational mode identified in BSCCO. Our analysis of the variation of the local mode energy and intensity with the local gap energy scale indicates an electronic origin of the mode consistent with spin-excitations rather than phonons.