Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Fungal Genetics and Biology, 1(39), p. 31-37

DOI: 10.1016/s1087-1845(02)00588-1

Links

Tools

Export citation

Search in Google Scholar

Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans

Journal article published in 2003 by Alexander Idnurm ORCID, Barbara J. Howlett
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Restriction enzyme mediated insertional mutagenesis using a plasmid, pUCATPH, that confers hygromycin resistance, generated loss-of-pathogenicity mutants of Leptosphaeria maculans, the fungus that causes blackleg disease of Brassica napus. Of 516 L. maculans transformants analysed, 12 were pathogenicity mutants. When eight of these mutants were crossed to an isolate that attacks B. napus, cosegregation of pUCATPH sequences and loss of pathogenicity was not observed, suggesting that these mutations were not linked to plasmid sequences. In seven of eight crosses analysed, progeny with the hygromycin resistance gene were hygromycin-sensitive. Sequence analysis of an amplified fragment of pUCATPH in six clones derived from one 'silenced' progeny showed mutation of GC to AT on one DNA strand, reminiscent of repeat-induced point mutation (RIP) in Neurospora crassa. One loss-of-pathogenicity mutant had pUCATPH inserted in the promoter of a gene with an open reading frame of 529 amino acids that had no database match. Reintroduction of a wild-type copy of the gene to this mutant restored the ability to form lesions on cotyledons of B. napus.