Published in

Acoust. Sci. & Tech., 3(35), p. 127-138

DOI: 10.1250/ast.35.127

Links

Tools

Export citation

Search in Google Scholar

Finite-difference time-domain analysis of structure-borne sound using a plate model based on the Kirchhoff-Love plate theory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A vibroacoustic numerical method employing an implicit finite-difference time-domain (FDTD) method, in which the target architecture is modeled as a composition of two-dimensional plate elements, is proposed in this paper. While structure-borne sound is a difficult phenomenon to predict owing to the complexity of the vibration mechanism on the building structure, wave-based numerical techniques may enable its accurate prediction by virtue of their flexibility from the viewpoint of modeling the object. However, with the current PC performance, prediction for a large-scale problem is still difficult. To solve such a problem, we model the target structure as a composition of plate elements to reduce the simulated field to two dimensions, in contrast to the discretization of the field into three-dimensional solid elements. This results in memorysaving and faster simulation. In this paper, the basic theory of vibroacoustic analysis for a model with plate elements is described, and the results of a case study for a box-type structure are discussed.