Published in

Wiley, British Journal of Haematology, 5(165), p. 659-672, 2014

DOI: 10.1111/bjh.12815

Links

Tools

Export citation

Search in Google Scholar

Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and Lyn inhibition by nocodazole

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Functional abnormalities of chronic lymphocytic leukaemia (CLL) cells may be related to the microtubular network of cell cytoskeleton; specifically tubulin involvement in cells after B-cell receptor engagement. As microtubule inhibitors could represent a therapeutic strategy for CLL, this study investigated the capability of nocodazole, a synthetic depolymerizing agent, to kill CLL leukaemic cells. We demonstrated that nocodazole was highly specific for the in vitro induction of apoptosis in leukaemic cells from 90 CLL patients, without affecting the viability of T-cells and/or mesenchymal stromal cells (MSCs) recovered from the same patients. Nocodazole was observed to overcome the pro-survival signals provided by MSCs. Competing with ATP for the nucleotide-binding site, nocodazole has been observed to turn off the high basal tyrosine phosphorylation of leukaemic cells mediated by the Src-kinase Lyn. Considering that most anti-microtubule drugs have limited clinical use because of their strong toxic effects, the high selectivity of nocodazole for leukaemic cells in CLL and its capability to bypass microenvironmental pro-survival stimuli, suggests the use of this inhibitor for designing new therapeutic strategies in CLL treatment.