Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Clinical Cancer Research, 21(19), p. 5984-5993, 2013

DOI: 10.1158/1078-0432.ccr-12-3104

Links

Tools

Export citation

Search in Google Scholar

Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics In Vivo by Humanized Monoclonal Antibody CS-1008

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: CS-1008 (tigatuzumab; phase I/II), an antihuman death receptor 5 (DR5) agonist, induces apoptosis and has cytotoxic activity against human cancer cell lines. This study reports on the preclinical validation of 111In-labeled anti-DR5 humanized antibody CS-1008 as a diagnostic tool to study the DR5 occupancy in patients with cancer and establish dose ranges for receptor saturation kinetics in vivo. Experimental Design: CS-1008 was radiolabeled and characterized for DR5 binding and labeling efficiency on TRAIL-sensitive DR5–positive colorectal cancer cells (COLO 205 and WiDr). Pharmacokinetic and biodistribution studies were conducted in BALB/c nu/nu mice bearing COLO 205, WiDr, or DR5-negative CT26 colon tumors. Planar gamma camera imaging and computerized tomography (CT) images were obtained to study receptor occupancy in vivo. Results: Scatchard analysis showed high and specific binding affinity (Kd, 1.05 ± 0.12 nmol/L) of 111In-labeled CS-1008. 111In-labeled CS-1008 was specifically taken up in mice bearing COLO 205 and WiDr tumors with prolonged tumor retention (26.25 ± 2.85%ID/g vs. 12.20 ± 2.24 at 168 hours post injection; n = 5, SD), and uptake correlated both with DR5 expression on tumor cells and antitumor activity. DR5 saturation was shown in vivo via both biodistribution studies and planar gamma camera imaging/CT imaging of 111In-labeled CS-1008. Saturation of DR5 corresponded to maximal in vivo antitumor efficacy. Conclusions: Imaging of DR5 receptor occupancy in vivo correlates with tumor concentration and in vivo efficacy, and is a novel molecular imaging technique that can be used to determine receptor occupancy and effective dose levels of DR5 agonist antibodies in the clinic. Clin Cancer Res; 19(21); 5984–93. ©2013 AACR.