Novel macroporous solid bases have been developed as alternative clean technologies to existing commercial homogeneous catalysts for the production of biodiesel from triglycerides; the latter suffer process disadvantages including complex separation and associated saponification and engine corrosion, and are unsuitable for continuous operation. To this end, tuneable macroporous MgAl hydrotalcites have been prepared by an alkali-free route and characterised by TGA, XRD, SEM and XPS. The macropore architecture improves diffusion of bulky triglyceride molecules to the active base sites, increasing activity. Lamellar and macroporous hydrotalcites will be compared for the transesterification of both model and plant oil feedstocks, and structure-reactivity relations identified.