Published in

Royal Society of Chemistry, Chemical Science, 10(6), p. 5635-5642, 2015

DOI: 10.1039/c5sc01421b

Links

Tools

Export citation

Search in Google Scholar

In situ Investigation of Dissociation and Migration Phenomena at the Pt/Electrolyte Interface of an Electrochemical Cell

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The development of efficient energy conversion systems requires precise engineering of electrochemical interfaces and thus asks for in situ techniques to probe the structure and the composition of the dynamic electrode/electrolyte interfacial region. This work demonstrates the potential of the Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAPXPS) for in situ studies of processes occurring at the interface between a metal electrode and a liquid electrolyte. By using a model membrane-electrode assembly of a high temperature phosphoric acid-imbibed proton exchange membrane fuel cell, and combining NAPXPS measurements with the density functional theory, it was possible to monitor such fundamental proceccess as dissociation and migration of the phosphoric acid within a nanostructured Pt electrode under polarization.