Elsevier, Neuroscience, 3(122), p. 707-715, 2003
DOI: 10.1016/j.neuroscience.2003.08.030
Full text: Download
The tumor suppressor gene p53 is a potent transcriptional regulator for genes involved in many cellular activities including cell cycle arrest and apoptosis. In this study, we examined the role of p53 in neuronal death induced by the sodium channel modulator veratridine. We also analyzed the involvement of Ca2+, mitochondria and reactive oxygen species in p53 activation. Exposure of hippocampal neurons to veratridine (0.3-100 microM) resulted in a dose-dependent neuronal death, measured 24 h after treatment. p53-Like immunoreactivity, undetectable in neurons under control conditions, was observed in about 25% of neurons, 7 h after veratridine exposure. Treatments that modified the alkaloid-induced Ca2+ influx including tetrodotoxin or Ca2+ removal, prevented either veratridine-induced cell death or p53 immunoreactivity. Mitochondria were involved in veratridine-induced cell death, as the alkaloid collapsed inner transmembrane mitochondrial potential in a Ca2+ influx dependent manner. Treatments of neuronal cultures with the permeability transitory pore blockers cyclosporin A and bongkrekic acid prevented veratridine-induced p53 immunoreactivity and neuronal death, placing mitochondria upstream of veratridine-induced p53 immunoreactivity. Reactive oxygen species also participated in veratridine-induced neurotoxicity and p53 activation. Antisense knockdown of p53 resulted in a significant increase in neuronal survival after veratridine treatment. This protective effect was maintained on N-methyl-D-aspartate or ischemia-induced death but not on staurosporine cytotoxicity. These results together suggest that p53-expression is involved in veratridine-induced neuronal death and that p53 might be a link between toxic stimuli of different types and neuronal death.