Published in

Springer (part of Springer Nature), European Journal of Pediatrics, 11(166), p. 1091-1098

DOI: 10.1007/s00431-007-0535-7

Links

Tools

Export citation

Search in Google Scholar

What's new in the neuro-cardio-facial-cutaneous syndromes?

Journal article published in 2007 by Ellen Denayer, Eric Legius ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The RAS-MAPKinase pathway is a signal transduction cascade which has been studied extensively during the last decades for its role in human oncogenesis. Activation of this cascade is controlled by cycling of the RAS protein between an inactive and an active state and by phosphorylation of downstream proteins. The signalling cascade regulates cell proliferation, differentiation and survival. Disturbed RAS signalling in malignancies is caused by acquired somatic mutations in RAS genes or other components of this pathway. Recently, germline mutations in genes coding for different components of the RAS signalling cascade have been recognized as the cause of several phenotypically overlapping disorders, recently referred to as the neuro-cardio-facial-cutaneous syndromes. Neurofibromatosis type 1, Noonan, LEOPARD, Costello and cardiofaciocutaneous syndromes all present with variable degrees of psychomotor delay, congenital heart defects, facial dysmorphism, short stature, skin abnormalities and a predisposition for malignancy. These findings point to important roles for this evolutionary conserved pathway in oncogenesis, development, cognition and growth. Conclusion: it has become obvious in recent years that the neuro-cardio-facial-cutaneous syndromes all share a common genetic and pathophysiologic basis. Dysregulation of the RAS-MAPKinase pathway is caused by germline mutations in genes involved in this pathway. Undoubtedly more genes causing related syndromes will be discovered in the near future since there are still a substantial number of genes in the pathway that are not yet associated with a known syndrome.