Published in

Springer Verlag, Photosynthesis Research, 2-3(89), p. 141-155

DOI: 10.1007/s11120-006-9092-6

Links

Tools

Export citation

Search in Google Scholar

Proteomic profiles of thylakoid membranes and changes in response to iron deficiency

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The proteomic profile of thylakoid membranes and the changes induced in that proteome by iron deficiency have been studied by using thylakoid preparations from Beta vulgaris plants grown in hydroponics. Two different 2-D electrophoresis approaches have been used to study these proteomes: isoelectrical focusing followed by SDS PAGE (IEF-SDS PAGE) and blue-native polyacrylamide gel electrophoresis followed by SDS PAGE (BN-SDS PAGE). These techniques resolved approximately 110-140 and 40 polypeptides, respectively. Iron deficiency induced significant changes in the thylakoid sugar beet proteome profiles: the relative amounts of electron transfer protein complexes were reduced, whereas those of proteins participating in leaf carbon fixation-linked reactions were increased. A set of polypeptides, which includes several enzymes related to metabolism, was detected in thylakoid preparations from Fe-deficient Beta vulgaris leaves by using BN-SDS PAGE, suggesting that they may be associated with these thylakoids in vivo. The BN-SDS PAGE technique has been proven to be a better method than IEF-SDS PAGE to resolve highly hydrophobic integral membrane proteins from thylakoid preparations, allowing for the identification of complexes and determination of their polypeptidic components.