Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Macromolecules, 17(45), p. 7293-7303, 2012

DOI: 10.1021/ma301197y

Links

Tools

Export citation

Search in Google Scholar

Short and Intermediate Range Order in Poly(alkylene oxide)s. A Neutron Diffraction and Molecular Dynamics Simulation Study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combining neutron diffraction with polarization analysis on isotopically labeled samples and fully atomistic molecular dynamics simulations, we have unravelled the structural features of the poly(alkylene oxide)s (PAOs) series. The experimental results show clear signatures of nanosegregation of main chains and side groups leading to the presence of alkyl nanodomains, as previously reported for other comb-like polymers like poly(n-alkyl methacrylates) (PnMAs). Comparison with polyethylene (PE) data shows that the atomic arrangements of side groups within the nanodomains in PAOs are more similar to bulk PE than those in PnMAs. After validating the simulations by direct comparison with the diffraction results on deuterated and protonated samples, we have exploited them to unveil the origin of the structure factor peaks and predict the outcome of potential neutron diffraction experiments on partially labeled samples. The simulated structures undoubtedly confirm the nanosegregation scenario in PAOs.