Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 29(1), p. 4450, 2013

DOI: 10.1039/c3tc30846d

Links

Tools

Export citation

Search in Google Scholar

Containing the catalyst: Diameter controlled Ge nanowire growth

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sub-20 nm diameter Ge nanowires with narrow size distributions were grown from Ag nanoparticle seeds in a supercritical fluid (SCF) growth process. The mean Ge nanowire diameter and size distribution was shown to be dependent upon Ag nanoparticle coalescence, using both spin-coating and a block copolymer (BCP) templating method for particle deposition. The introduction of a metal assisted etching (MAE) processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, was shown to dramatically decrease the mean nanowire diameter from 27.7 to 14.4 nm and to narrow the diameter distributions from 22.2 to 6.8 nm. Hence, our BCP-MAE approach is a viable route for controlling the diameters of semiconductor nanowires whilst also ensuring a narrow size distribution. The MAE step in the process was found to have no detrimental effect on the length or crystalline quality of the Ge nanowires synthesised.