Published in

Mary Ann Liebert, Brain Connectivity, 2(5), p. 69-79, 2015

DOI: 10.1089/brain.2014.0229

Links

Tools

Export citation

Search in Google Scholar

Connectomic Profiles for Individualized Resting State Networks and ROIs.

Journal article published in 2014 by Kaiming Li, Jason Langley, Zhihao Li, Xiaoping P. Hu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Functional connectivity analysis of human brain resting state fMRI data and resultant functional networks, or RSNs, have drawn increasing interest in both research and clinical applications. A fundamental yet challenging problem is to identify distinct functional regions or ROIs that have accurate functional correspondence across subjects. This paper presents an algorithmic framework to identify ROIs of common RSNs at the individual level. It first employed a dual-sparsity dictionary learning to extract group connectomic profiles of ROIs and RSNs from noisy and high dimensional fMRI data, with special attention to the well-known inter-subject variability in anatomy and then identified the ROIs of a given individual by employing both anatomic and group connectomic profile constraints using an energy minimization approach. Applications of this framework demonstrated that it can identify individualized ROIs of RSNs with superior performance over commonly-used registration methods in terms of functional correspondence, and a test-retest study revealed that the framework is robust and consistent across both short-interval and long-interval repeated sessions of the same population. These results indicate that our framework can provide accurate substrates for individualized resting state fMRI analysis.