Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Inorganic Chemistry, 9(50), p. 4016-4020, 2011

DOI: 10.1021/ic102514a

Links

Tools

Export citation

Search in Google Scholar

Mononuclear FeIISingle-Molecule Magnets: A Theoretical Approach

Journal article published in 2011 by Eduard Cremades, Eliseo Ruiz ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The single-molecule magnet behavior found in mononuclear tetracoordinate Fe(II) complexes with trigonal monopyramidal coordination due to large magnetic anisotropy has been analyzed using theoretical methods based on CASSCF-RASSI calculations. We focus our study on the dependence of such magnetic properties on the geometrical parameters of the complexes (asymmetry of the ligands and the out-of-plane shift of the Fe(II) cation with respect to the three equatorial nitrogen atoms) and the influence of the basicity of the N ligands. Low basicity, larger shifts, and larger distortions of the FeN(4) central framework decrease the D value and increase the E value. Also, we predict similar magnetic properties for similar pentacoordinate complexes adding an axial ligand that will increase the chemical stability of such systems.