American Chemical Society, Inorganic Chemistry, 9(50), p. 4016-4020, 2011
DOI: 10.1021/ic102514a
Full text: Download
The single-molecule magnet behavior found in mononuclear tetracoordinate Fe(II) complexes with trigonal monopyramidal coordination due to large magnetic anisotropy has been analyzed using theoretical methods based on CASSCF-RASSI calculations. We focus our study on the dependence of such magnetic properties on the geometrical parameters of the complexes (asymmetry of the ligands and the out-of-plane shift of the Fe(II) cation with respect to the three equatorial nitrogen atoms) and the influence of the basicity of the N ligands. Low basicity, larger shifts, and larger distortions of the FeN(4) central framework decrease the D value and increase the E value. Also, we predict similar magnetic properties for similar pentacoordinate complexes adding an axial ligand that will increase the chemical stability of such systems.