Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Atmospheric Environment, (127), p. 107-117, 2016

DOI: 10.1016/j.atmosenv.2015.12.034

Links

Tools

Export citation

Search in Google Scholar

Assessing the impact of atmospheric stability on locally and remotely sourced aerosols at Richmond, Australia, using Radon-222

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A flexible radon-based scheme for the classification of nocturnal stability regimes was used for the interpretation of daily-integrated PM2.5 aerosol observations collected at Richmond, Australia, between 2007 and 2011. Source fingerprint concentrations for the dominant locally and remotely sourced aerosols were analysed by nocturnal radon stability category to characterise the influences of day-to-day changes in daily integrated atmospheric mixing. The fingerprints analysed included: smoke, vehicle exhaust, secondary sulfate and aged industrial sulfur. The largest and most consistent stability influences were observed on the locally sourced pollutants. Based on a 5-year composite, daily integrated concentrations of smoke were almost a factor of 7 higher when nocturnal conditions were classed as "stable" than when they were "near neutral". For vehicle emissions a factor of 4 was seen. However, when the winter months were considered in isolation, it was found that these factors increased to 11.5 (smoke) and 5.5 (vehicle emissions) for daily average concentrations. The changes in concentration of the remotely sourced pollutants with atmospheric stability were comparatively small and less consistent, probably as a result of the nocturnal inversion frequently isolating near-surface observations from non-local sources at night. A similar classification was performed using the commonly-adopted Pasquill-Gifford (PG) stability typing technique based on meteorological parameters. While concentrations of fingerprints associated with locally-sourced pollutants were also shown to be positively correlated with atmospheric stability using the PG classification, this technique was found to underestimate peak pollutant concentrations under stable atmospheric conditions by almost a factor of 2.