Published in

Springer (part of Springer Nature), Chromosoma, 1-2(109), p. 50-61

DOI: 10.1007/s004120050412

Links

Tools

Export citation

Search in Google Scholar

Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes

Journal article published in 2000 by Albert V. Smith ORCID, G. Shirleen Roeder
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synaptonemal complex (SC) is a meiosis-specific proteinaceous structure that holds homologous chromosomes close together along their length during the pachytene stage of meiotic prophase. The SC is observed in sexually reproducing fungi, plants and animals and is highly conserved at the cytological level. Despite this striking conservation of structure, however, the known protein components of the SC do not appear to be highly conserved across species. In Saccharomyces cerevisiae, the products of the RED1 and HOP1 genes are associated with the lateral elements of the SC. Using a functional complementation strategy, we have isolated homologs of these genes from the related yeast, Kluyveromyces lactis. The predicted K. lactis Red1 protein is 26% identical to the S. cerevisiae Red1 protein, and the K. lactis Hop1 protein is 40% identical to the S. cerevisiae Hop1 protein. The K. lactis RED1 gene fully complements the S. cerevisiae red1 mutant, both when overexpressed and when present in two copies in a diploid. However, the K. lactis HOP1 gene complements a hop1 mutant poorly when overproduced and not at all when present in two copies in a diploid. Unlike the S. cerevisiae RED1 gene, the K. lactis RED1 contains an intron; the transcript of the K. lactis gene is efficiently spliced during meiosis in S. cerevisiae.