Published in

The Electrochemical Society, Journal of The Electrochemical Society, 1(163), p. A5068-A5083, 2015

DOI: 10.1149/2.0091601jes

Links

Tools

Export citation

Search in Google Scholar

Spectroscopic Measurement of State of Charge in Vanadium Flow Batteries with an Analytical Model of V IV -V V Absorbance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

peer-reviewed ; The ultraviolet-visible spectra of catholytes for vanadium flow batteries (VFBs) were measured and analyzed for a range of V-IV:V-V ratios and vanadium concentrations. Using a model of V2O33+ in equilibrium with VO2+ and VO2+, the spectra were characterized in terms of an excess absorbance parameter p and the molar extinction coefficients epsilon(4) and epsilon(5) of VO2+ and VO2+, respectively. The results showed that p varies weakly with the vanadium concentration C and this variation was quantified relative to a reference concentration C-r by means of a concentration coefficient phi(r). Experimental data showed that plots of fr versus C phi(r) and plots of 1/phi(r) versus C are linear and, based on this linearity, phi(r) was expressed as a simple function of C in terms of its reference concentration C-r and a single parameter M that is independent of the choice of C-r. Standard spectra of p at a concentration C-0 = 1 mol dm(-3) and of epsilon(4) and epsilon(5) were generated from which the spectrum of any catholyte may be simulated using the measured value of M in a governing equation. This enables determination of the state of charge for any VFB catholyte using absorbance measurements at a small number of wavelengths. (C) The Author(s) 2015. Published by ECS. All rights reserved. ; PUBLISHED ; peer-reviewed